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We introduce a two-body quantum Hamiltonian model of spin 1
2 on a two-dimensional spatial lattice with

exact topological degeneracy in all coupling regimes. There exists a gapped phase in which the low-energy
sector reproduces an effective color code model. High-energy excitations fall into three families of anyonic
fermions that turn out to be strongly interacting. The model exhibits a Z2�Z2 gauge-group symmetry and
string-net integrals of motion, which are related to the existence of topological charges that are invisible to
moving high-energy fermions.
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I. INTRODUCTION

The Kitaev model on the honeycomb lattice1 has attracted
a great deal of attention in the recent years2–5 since it offers
the opportunity to study many properties of topologically
ordered systems in a very well-suited scenario for condensed
matter. One of the most interesting properties of the Kitaev
model is that one of its phases effectively reproduces the
famous toric code. This is the first example of topological
quantum error correction and plays a major role in quantum
information.

Yet, there is another family of topological codes, color
codes, which exhibit very remarkable properties. They allow
an appropriate implementation of the whole Clifford group
of quantum gates, which are essential in quantum informa-
tion tasks.6 Topological color codes �TCC� are constructed
with quantum lattice Hamiltonians that typically demand six-
body terms in a two-dimensioanl �2D� spatial lattice, require-
ments quite unrealistic in a condensed-matter framework. Up
to now, it has remained a challenge to find a two-body
Hamiltonian capable of hosting a TCC in a particular cou-
pling regime.

In this paper we provide such a two-body spin-1
2 Hamil-

tonian model. It turns out to exhibit very rich physics and,
quite remarkably, it does not belong to the family of models
originated after Kitaev’s model. These latter models are de-
fined on trivalent lattices, which allows a fermionization
yielding a free fermion exact solution. Instead, the lattice of
our model is 4 valent, a sharp difference that prevents com-
plete solvability and gives rise to very interesting features
not present in the mentioned models: �i� exact topological
degeneracy in all coupling regimes, rooted on the existence
of string-net integrals of motion. This degeneracy, related to
certain “invisible” topological charges, is 4g fold in surfaces
of genus g. �ii� emergence of three families of strongly inter-
acting fermions with semionic relative statistics. �iii� an ex-
act Z2�Z2 gauge symmetry. Each family of emergent fer-
mions sees a different Z2 gauge subgroup.

Thus, the model admits an exact analysis of many inter-
esting properties. This is so mainly because there exist local
integrals of motion in an amount of 1

3 of the total number of
spins.

Although we will focus on a particular phase of the
model, namely, the one that effectively yields TCCs, a rich
phase diagram beyond this gapped phase is to be expected in
analogy with.1 This includes the possibility of non-Abelian
anyons and other phases with interesting many-body effects.
In addition, it is possible to break a symmetry of the model,
which we call color symmetry whereas the exact features
above are kept. This paves the way to a yet more complex
phase diagram.

The properties of the model make it a good candidate for
an experimental realization, by means of some engineering
scheme such as polar molecules on optical lattices.7 It is also
amenable to numerical computations8 with several methods,
which would help to uncover some of its nonperturbative
aspects and phases.

In summary, the model represents a relevant contribution
to the difficult task of searching for systems with emerging
anyons and topological order, which are conceptually impor-
tant phenomena and a source of physics.

This paper is organized as follows: in Sec. II we introduce
the quantum Hamiltonian model based solely on two-body
interactions between spin-1

2 particles. The lattice is two di-
mensional and has coordination number 4, instead of the
usual 3 for the Kitaev model. It is pictured in Fig. 1 and it is
called ruby lattice. In Sec. III, we introduce a mapping from
the original spin-1

2 degrees of freedom onto bosonic degrees
of freedom in the form of hard-core bosons which also carry
a pseudospin. In Sec. IV, we describe the constants of motion
of our model, specifying both its various types �normal
strings and nonstandard stringnets�, as well as its number of
1
3 of the total number of spins. With the help of the previous
mapping, it is possible to analyze very interesting qualitative
features of our model at nonperturbative level. In Sec. V, we
show how the emerging quasiparticle excitations of our
model are anyonic fermions with strong interactions, which
are a manifestation of the string-net structure of the constants
of motion. Thus, the model is not a free fermion model. In
Sec. VI, we solve the problem of finding a two-body quan-
tum lattice Hamiltonian hosting the topological color code as
one of its phases. Interestingly enough, the relevant proper-
ties of the TCC remain valid at the nonperturbative level as
well. We also describe the notion of invisible charges and
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discuss anyon condensation, and its implications. Section VII
is devoted to conclusions.

II. HAMILTONIAN MODEL WITH TWO-BODY
INTERACTIONS

The model of interest lives in the lattice of Fig. 1�a�.
Notice that, unlike in Refs. 1–4, it has coordination 4. Verti-
ces represent spin-1

2 systems and links two-body interactions.
The Hamiltonian is

H = − �
�i,j�

Jw�i
w� j

w, w = �x , red links

y , green links

z , blue links
� , �1�

where the couplings Jw�0 are real, �w are the Pauli matrices
and the sum extends over all links. Notice that blue links are
special since they form triangles, which we will refer to as
sites for reasons that will be apparent below.

Sites are the vertices of a reduced lattice � in which links
are given by the pairs of parallel red and green links of the
original lattice, see Fig. 1�c�. This reduced lattice will play
an essential role in the study of the properties of the model.
It is an hexagonal lattice and thus has 3-colorable plaquettes.
We choose to color them with red �r�, green �g�, and blue �b�.
We also color links accordingly, in such a way that c links
connect c plaquettes. Here and in what follows, we use the
letter c to denote color variables. We remark that this color-
ing has nothing to do with the one used for links in Fig. 1�a�.
The coloring of the reduced lattice induces a coloring of
some plaquettes of the original lattice, see Fig. 1�b�, and also
a vertex coloring that labels the spins within a site.

Although we have given a particular lattice for concrete-
ness, the analysis that follows is much more general. Instead
of having a hexagonal reduced lattice, it could be any triva-
lent lattice with 3-colorable plaquettes. Such lattices were
named 2-colexes in Ref. 9. Any closed surface will work,
orientable or not. That the construction works on nonorient-
able surface is a consequence of the equivalence of vertex
bicolorability and orientability in 2-colexes.10

III. BOSONIC MAPPING

In Sec. VI we will analyze in detail the regime Jz�0,
�Jx� , �Jy��Jz. Let us set for simplicity Jz=1 /4. Then in the
extreme case Jx=Jy =0 the system consists of isolated tri-
angles, one per site. In an energy eigenstate, each of them
contributes an energy −3 /4 or 1/4 so that we can attach a
quasiparticle with energy gap equal to 1 to each triangle.
With this motivation, we give here a map to a system in
which these quasiparticles are explicit. The mapping is exact
so that only the physical picture is changed. It has the advan-
tage of isolating those degrees of freedom that survive once
the integrals of motion to be described below have been
fixed.

In Fig. 1�b� each spin in a site has been identified with a
color. We label the corresponding Pauli operators as �c

w with
c=r ,g ,b. Consider the Hilbert space HC with orthonormal
basis 	�0� , �r� , �g� , �b�
 and introduce the colored annihilation
operators

bc ª �0��c�, c = r,g,b, �2�

so that HC represents a hard-core boson with three possible
color states. The number operator n and the colored number
operator nc are

n ª �
c

nc, nc ª bc
†bc. �3�

At each site, we attach such a boson and also an effective
spin 1

2 . We have to relate this degrees of freedom to the
original three spins in the site, which are colored as in Fig.
1�b�. The mapping can be expressed by relating bases of both
systems. In particular, taking the usual up/down basis for the
three physical spins and the tensor product basis

�a,d� = �a� � �d�, a = ↑,↓, d = 0,r,g,b, �4�

for the effective spin and hard-core boson system we have

�↑ ,0� � �↑↑↑�, �↓ ,0� � �↓↓↓� , �5�

�↑ ,r� � �↑↓↓�, �↓ ,r� � �↓↑↑� , �6�

�↑ ,g� � �↓↑↓�, �↓ ,g� � �↑↓↑� , �7�

�↑ ,b� � �↓↓↑�, �↓ ,b� � �↑↑↓� . �8�

More compactly, the mapping can be expressed by identify-
ing operators as follows:

�c
z � �z

� pc, �c
v � �v

� �bc
† + bc + svrc� , �9�

where v=x ,y, sxª−syª1, the symbols � denote the Pauli
operators on the effective spin and we are using the color
parity operators pc and the color switching operators rc de-
fined as

pc ª 1 − 2�nc̄ + nc̄̄�, rc ª bc̄
†bc̄̄ + b

c̄̄

†
bc̄, �10�

where the bar operator transforms colors cyclically as fol-
lows:

a b c

x

y

z

r

r

g

g

b

b

FIG. 1. �Color online� Three different points of view of the
system. In �a,b� blue links form triangles and red and green links
form hexagons. �a� is the physical one, with vertices representing
spins and colored links representing �a

x�b
x, �a

y�b
y, and �a

z�b
z two-

body interactions. In �b� both spins and hexagonal plaquettes have
been colored. �c� is the reduced lattice �, where vertices represent
sites, that is, the blue triangles of �a�. We show a magnified site in
��a� and �b� and a closed string in �c�.
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r ª g, g ª b, b ª r. �11�

From this point on we will be working always in the reduced
lattice �. For compactness, we will use a simplified notation
in which site indices are supressed and only relative posi-
tions are indicated; the notation O,c means O applied at the
site, that is, connected to a site of reference by a c link. For
example, if i , j ,k are neighboring sites, with i the reference
site and j ,k are connected to i by a g link and a r link,
respectively, then instead of AiBjCk we write AB,gC,r. That is,
we only indicate the relationship between sites and com-
pletely omit the reference site i, which is therefore implicit.
Also, we indicate the w=x ,y ,z indices of Jw, �w, and sw in
terms of two colors as follows:

c�c ª z, c̄�c ª x, c̄̄�c ª y . �12�

Then, the Hamiltonian �1� can be exactly transformed into a
new form

H = − 3N/4 + Q − �
�

�
c�c�

Jc��cTc
c�, �13�

with N the number of sites, Qª��n the total number of
hard-core bosons, the first sum running over the N sites of
the reduced lattice, the second sum running over the six com-
binations of different colors c ,c� and

Tc
c� = uc

c� +
tc
c� + vc

c�

2
+

rc
c�

4
+ H.c., �14�

a sum of several terms for an implicit reference site, accord-
ing to the notation convention we are using. The meaning of
the different terms in Eq. �14� is the following. The operator

tc
c� is a c-boson hopping, rc

c� switches the color of two c̄ or c̄̄

bosons, uc
c� fuses a c boson with a c̄ boson �or a c̄̄ boson� to

give a c̄̄ boson �c̄ boson� and vc
c� destroys a pair of c bosons.

A pictorial representation is offered in Fig. 2�a�. The explicit
expressions are

tc
c�
ª �c

c�bcbc,c�
† , rc

c�
ª �c

c�rcrc,c�, �15�

uc
c�
ª sc��c�c

c�bcrc,c�, vc
c�
ª �c

c�bcbc,c�, �16�

where we are using the notation

�c
c�
ª �c��c�,c�

c��c. �17�

IV. CONSTANTS OF MOTION

In this section we explore several integrals of motion of
the Hamiltonian �13�.

A. Color charge

A basic property of the Hamiltonian �13� is the existence
of a Z2�Z2 charge. Let us label the elements of Z2�Z2
with colors as 	e , r ,g ,b
, where e is the identity element. We
also label its irreps as 	�e ,�r ,�g ,�b
 setting �e�c�ª�c�c�ª
−�c�c̄�ª1. Let us arbitrarily attach a charge to each family

of hard-core bosons. In particular, we attach the irrep �c to
each c boson. Let Qc=��nc be the total number of c bosons.
The total color charge

�� ª �r
Qr�g

Qg�b
Qb �18�

is preserved by the Hamiltonian. This can be checked di-
rectly or noting that the operators

���c� = �− 1�Qc̄+Qc̄̄ = �
�

pc �19�

commute with all the terms in Eq. �14�. In Sec. V the mean-
ing of color charge will become clear when we relate it to a
Z2�Z2 gauge field.

B. Plaquette operators

We describe now certain plaquette operators that com-
mute with each other and with each of the terms of the
Hamiltonian. As we will show below, the corresponding de-
grees of freedom should be regarded as vortices. For each
color c and each plaquette � there is a constant of motion of
the form

S�
c
ª �

�

�c�c�pc��c, �20�

where c� is the color of the plaquette �, the product runs
through its sites, and � is just a convenient symmetric color
operator defined by

c � c ª c, c � c̄ ª c̄ � c ª c̄̄ . �21�

These operators are not all independent. They are subject
only to the following constraints

a

b

c

d

1
2

3

FIG. 2. �Color online� Several c-fermion processes, in the effec-
tive hexagonal lattice. c fermions are depicted as c-colored balls
and their movement with c-colored directed strings. When the ini-
tial and final color charge at a site are different before and after a
process, we show the transition with an small black arrow. �a� Ex-
amples of the effects of the terms in Eq. �13�. From top to bottom,
the corresponding terms are tg

r , ur
b, rb

g, and vg
r . �b� A typical

c-fermion interaction process, with hoppings, fusions, and split-
tings. �c� The exchange of two identical b fermions. �d� An r fer-
mion surrounds a region 	. The phase that it picks up depends both
on the number of g and b fermions in 	 and the vortex states of the
plaquettes marked with an spiral.
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�
���

S�
c = �− 1�N/2, �

c=r,g,b
S�

c = �− 1�s/2, �22�

where s is the number of sites of a given plaquette � and we
are supposing in the first equation that the lattice forms a
closed surface. It follows that there are 2F−2 independent
plaquette operators, with F the number of faces, or
plaquettes, of the reduced lattice �. The total color charge is
not independent of plaquette operators because

���c� = �
���c̄

S�
c̄ �

���c̄̄

S�
c̄̄ , �23�

where �c denotes the subset of c plaquettes of �.
In Sec. V we show that plaquette degrees of freedom can

be regarded as vortices, as they correspond to a Z2�Z2
gauge field, which has therefore no dynamics. The corre-
spondence between plaquette-operator eigenstates and group
values is as follows. First, for each c plaquette we introduce
the following alternative plaquette operators:

B�
c̄̄
ª jx

s/2S�
c̄ ,

B�
c̄
ª jy

s/2S�
c̄̄ ,

B�
c
ª �− jxjy�s/2S�

c , �24�

where jwªJw / �Jw�. The element g��Z2�Z2 that we attach
to each plaquete � is determined, for a given eigenstate of
the operators Eq. �24�, by the conditions

�c�g�� = B�
c . �25�

These equations always have a solution because �B�
c �2

=B�
r B�

g B�
b =1. Given a region or collection of plaquettes 	,

we will use the notation g	ª���	g�.

C. String operators

Plaquette constants of motion can be generalized to closed
strings and, for that matter, also to string nets.10 For a closed
string we mean a connected path in the lattice with no end
points, see Fig. 1�c�. To any such string 
 and color c we
attach a string operator

S

c
ª �




�c�c�pc�c�, �26�

where the product runs through the sites of 
 and, for each
site, c� is the color of the plaquette arround which 
 turns at
the site. This is exemplified in Fig. 1�c�, where we have
marked with a dot the corresponding plaquette for each ver-
tex of the string. As in the case of plaquette operators, we

have �S

c�2= �−1�

s
2 S


cSc̄S

c̄̄ =1 with s the number of sites of 
.

Closed string operators commute with all plaquette operators
and Hamiltonian terms but not always with each other.
Namely, if the strings 
 and 
� cross once then �S


c ,S
�
c =0

but 	S

c ,S
�

c̄ 
=0.
This anticommutation property, which remarkably is not

present in Ref. 1, turns out to be crucial. In systems with
nontrivial topology it is the source of an exact degeneracy of

the Hamiltonian. For example, the lattices of Fig. 1 with
periodic boundary conditions live on a torus, which has two
independent nontrivial loops 
, 
�. Then S


c anticommutes
with S
�

c̄ and commutes with S

c̄ and S
�

c , showing11 that the
Hamiltonian is at least fourfold degenerate. More generally,
in a closed surface with Euler characteristic � the degeneracy
is 22−�. In particular, in orientable surfaces of genus g there
exist a 4g-fold topological degeneracy. This result is exact
and independent of the particular phase of the system we are
in. In order to label the global flux degrees of freedom at-
tached to nontrivial string operators we can use the eigenval-
ues of 2−� topologically nontrivial and independent closed
string operators of a given color.

V. ANYONIC FERMIONS

In the previous section we have learned that the system is
divided into sectors with a given vortex and global flux con-
figuration. We now want to understand the nature of the de-
grees of freedom in each of these sectors and we start count-
ing them. In terms of spin-1

2 degrees of freedom, the original
system has 3N spins, the plaquette operators remove 2F−2
of them and the nontrivial string operators of a given color
2−� more. These leaves N�=2N−� effective spins in a
given sector. Since we are not interested in global degrees of
freedom, let us suppose that the topology is trivial so that
2−�=0. Then the resulting value of N� can be easily under-
stood; we are only left with hard-core boson degrees of free-
dom �hence the 2N�, subject to the constraint of color charge
preservation �hence the −2�. In fact, in each sector we can
choose a basis with elements labeled by the state of the hard-
core bosons so that these become the relevant degrees of
freedom. As we will see, the dynamics of the system trans-
form the hard-core bosons into three families of fermions
with anyonic statistics between them. Moreover, we will see
that these fermions interact strongly. For arbitrary couplings
this only provides us with a picture to understand the system
since the emergent quasiparticles could be very different.
However, in the regime analyzed in Sec. VI the anyonic
fermions come to life explicitly.

In order to check the statistics of the effective quasiparti-
cles emerging from hard-core boson degrees of freedom it
suffices12 to study the hopping terms in Eq. �13�. Strictly
speaking, the situation here is not the same as in Ref. 12 as
we are not studying quasiparticles. More close is the ap-
proach in Ref. 1, where the emphasis is done on the proper-
ties of string operators. Now, we first note that the hopping

terms tc
c̄ and tc

c̄̄ that appear in Eq. �13� are only enough to hop
a c boson around a c plaquette. We need also composite
hoppings: tc

c=u
c̄̄

c
uc̄,c

c† =uc̄
cu

c̄̄,c

c†
hops a c boson from a c plaquette

to another. Notice that this notation completely agrees with
Eq. �15�. Consider a state with only two c-boson excitations,
located at two sites separated, respectively, by a c̄ and a c̄̄
link from a given reference site, as in Fig. 2�c�. We may then
consider a hopping process, indicated with numbers in the
figure, in which the c bosons are exchanged in such a way
that local contributions cancel.1 The net effect of exchanging
the c bosons is
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tc
c̄̄tc,c

c tc
c̄t

c,c̄̄

c̄̄
tc
ctc,c̄

c̄ = ��y�
,c̄̄

y
�z�,c

z �x�,c̄
x �2 = − 1, �27�

showing that the hard-core bosons give rise to fermions.12

These fermions carry a nontrivial color charge and thus
we have three families of them. They are not free but inter-

acting, as follows from the existence of the uc
c� terms in the

Hamiltonian, which correspond to a 3-fermion interaction
vertex, see Fig. 2�b�. In fact, the existence of this vertex
indicates that we are not dealing just with fermions but rather
with anyons; three conventional fermions cannot fuse into
the vacuum. In addition, fermions must be coupled to a non-
trivial gauge field.12

In order to understand these two issues, let us consider a
process in which a c fermion is carried around a region 	, as
in Fig. 2�d�. For clarity, we assume that no fermions but that
to be transported are present along the boundary of 	. The
hopping process yields a phase

�	
c = �c�g	��− 1�nc̄

	+n
c̄̄

	
+n4

	
, �28�

where nc
	 denotes the number of c fermions inside 	 and n4

	

the number of 2-colex plaquettes inside 	 with a number of
edges that is a multiple of four. We conclude that each family
of fermions carries a different representation of a Z2�Z2
gauge group with values g	 dictated by the vortex states. In
addition, fermions of different color have semionic mutual
statistics; they pick a-1 phase when one of them winds
around the other. Thus, fermions not only interact via virtual
fermion exchanges but also topologically.

VI. EFFECTIVE TOPOLOGICAL COLOR CODE

We now turn to a perturbative study of the regime Jz�0,
�Jx� , �Jy��Jz, for which the previous bosonic mapping is spe-
cially suited. As in Ref. 13 we apply the PCUTs method14

�perturbative continuous unitary transformations�. This
method produces an effective Hamiltonian Heff, at a given
perturbation order such that �Heff ,Q=0. We are specially
interested in the low-energy physics, that is, the Q=0 sector
of the Hamiltonian �notice that the sectors here have nothing
to do with the ones discussed in the previous section�. For

each c plaquette � let us set B�
x
ªB�

c̄̄ and B�
y
ªB�

c̄ . Then
since Q=0 we have

B�
x = jx

s/2�
�

�x, B�
y = jy

s/2�
�

�y . �29�

For the particular lattice of Fig. 1, the ninth order perturba-
tive calculation yields, up to a constant, the effective Hamil-
tonian

Heff = − �
���

�kxB�
x + kyB�

y + kzB�
x B�

y � , �30�

with

kz =
3

8
�JxJy�3 + O�J7� , �31�

kx

�Jy�3
=

ky

�Jx�3
=

55489

13824
�JxJy�3. �32�

The Hamiltonian �30� describes a color code model on the
effective spins.6 Its ground state is the vortex free sector,
where �c�g��=1 for any plaquette �. Excitations are vorti-
ces, gapped, and localized at plaquettes with B�

x =−1 and/or
B�

y =−1. At higher orders in perturbation theory the terms of
the effective Hamiltonian take the form of products of vortex
operators, which gives rise to vortex interactions.10,13

Color code models have a topological order described by
a Z2�Z2 quantum double.15 Thus there exist 16 topological
charges in the model, labeled with pairs �g ,�� with g�Z2
�Z2 and � an irrep of this group. The trivial charge or
vacuum sector is �e ,�e�, the charges �c ,�e�, �e ,�c�, and
�c ,�c� are bosons and �c ,�c̄� and �c ,�c̄̄� are fermions. As for
the mutual statistics, moving a �g ,�� charge around a �g� ,���
charge gives a topological phase ��g�����g�. Regarding fu-
sion rules, a �g ,�� charge and a �g� ,��� charge form together
a �gg� ,���� charge. Notice how the three fermions �c ,�c̄�
form a family closed under fusion. The same is true for the
three �c ,�c̄̄� fermions. Two fermions from different families
have no topological interaction. This property will turn out to
be important in the understanding of the model.

There are several possible ways to label the excitations of
the gapped phase Eq. �30�. Our choice is that an excitation at
a c plaquette � has �c ,�e� charge if −B�

x =B�
y =1, �e ,�c�

charge if B�
x =−B�

y =1, and �c ,�c� charge if B�
x =B�

y =−1.

A. Beyond the low-energy sector

We now turn our attention to the high-energy quasiparti-
cles, that is, those which contribute to the quasiparticle
counter Q. From the analysis of Sec. V we now that these are
three families of interacting anyonic fermions. The virtual
processes of these fermions create the gap for low-energy
excitations, as well as interactions between them.

High-energy quasiparticles belong to a particular topo-
logical charge superselection sector. This correspondence be-
tween low- and high-energy excitations follows from the glo-
bal constraints Eqs. �22� and �23�, which have local
consequences. Namely, the local creation of a single c fer-
mion must be accompanied by the change in sign of several
vortex operators, with the net result of the creation/
annihilation of a low-energy �c̄ ,�c̄̄� charge. This topological
charge has exactly the properties needed to agree with the
fermion fusion rules and the results �27� and �28� derived
before.

Let us now take a closer look to the sector with Q=1,
which involves no interactions. Using the PCUTs method
one can derive the effective Hamiltonian for the gapped
phase in the sector with a single c fermion, for a given color
c. At first order the c fermion just hops around c plaquettes
so that for J=Jx=Jy we get a −2J contribution to the energy
gap coming from this orbital motion. Going to second order
we get a nonflat dispersion relation that corresponds to the
triangular lattice formed by c plaquettes. The gap, at this
order, is given by 1−2J−J2 /2 and thus it closes at J�0.45.
This is just an approximate estimation since we are omitting
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all fermion interactions and, perhaps more importantly, we
are taking J�Jz. However, it is to be expected that as the
couplings Jx�Jy grow in magnitude the gap for high-energy
fermions will reduce, producing a phase transition when the
gap closes. Such a phase transition resembles the anyon con-
densations discussed in Refs. 16 and 17. Here we are dealing
with a condensation of three anyonic fermions that does not
fit those examples but part of the physical picture could be
similar. There exist three nontrivial topological charges that
do not interact with the three condensed anyons. We would
thus expect a residual topological order in the new phase,
with three nontrivial topological charges with relative semi-
onic statistics. These charges would then be responsible for
the 4g exact topological degeneracy. This conjecture is to
some extent supported by the validity in all phases of closed
string integrals of motion which, as we will see next, repre-
sent processes related to the three topological charges invis-
ible to the moving fermions.

B. Invisible topological charges

It is natural to expect that open c-string operators will
create, transport, and destroy a particular topological charge
among the 16 possible ones. But since string operators com-
mute with the hopping terms in Eq. �13�, the corresponding
three charges must have bosonic relative statistic with re-
spect to the moving high-energy fermions. That is, they must
be “invisible” for them. This is indeed the case, since, as can
be easily checked, c strings move �c̄̄ ,�c̄� charges. These are
three fermionic charges with semionic mutual statistics.

Such an invisibility feature for several charges with non-
trivial mutual statistics is not present in the Kitaev model and
has a potential qualitative advantage from an experimental
perspective. In this regard, in Ref. 5 it was discussed how the
high-energy fermions of the honeycomb model can spoil at-
tempts to demonstrate the topological order. The fact that in
the present model there exist topological charges invisible to
high-energy fermions could simplify the operations needed
to show the appearance of topological phases because a pro-
cess that only involves the invisible charges is nothing but a
product of string constants of motion.

VII. CONCLUSIONS AND PROSPECTS

We have presented a quantum lattice Hamiltonian in 2D
spatial dimensions that models many relevant and interesting
features regarding systems with quantum topological proper-

ties. An instance of this is the existence of string-nets con-
figurations which are constants of motion of the Hamiltonian
and are related to fermionic processes. This is a nonpertur-
bative result, thus valid for any regime of coupling constants
in the model.

Another prominent result is the emergence of fermionic
quasiparticles with nontrivial relative statistic, that is,
anyonic ferminons. These fermions are not free but highly
interacting, which makes difficult an analytical approach.

The model we have introduced deserves further study in
many directions that we have motivated throughout our work
and they are beyond the scope of this paper. We can mention
hereby several prospects for future work.

The Hamiltonian �1� has the symmetries of the lattice in
Fig. 1�a�. We could consider a more general Hamiltonian, in
such a way that some of these symmetries are lost and we are
left only with those of Fig. 1�b�. This amounts to explicitly
break the color symmetry of the model by substituting the
three couplings Jw with nine couplings Jw

c . The couplings Jz
c

correspond to the blue bonds that connect a c̄ and a c̄̄ vertex,
and the couplings Jx

c and Jy
c correspond, respectively, to the

red and green bonds lying on c plaquettes, see Fig. 1�b�. This
gives rise to a richer phase diagram and physics. For ex-
ample, in the effective color code phase the differences
among the Jz

c couplings amounts to different gaps for r, g,
and b fermions. Then different phase transitions will produce
as each of the gap closes.

We have made a clear connection of the model with the
topological color code, which appears as a gapped phase. We
have found perturbative indications for the existence of other
phases. Thus, it is desirable to continue the study of the
whole phase diagram of the model using other types of tech-
niques, including numerical simulations.

Another aspect that deserves further study is the proper-
ties of these models for quantum computation in a more
explicit way since here we have only focused on their prop-
erties as far as topological order is concerned and its connec-
tions with topological color codes.
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